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Summary

We present a simple approach to obtain constrained estimates of the infection
curves, relative to the number of persons infected with the human immunodeficiency
virus (HIV). Because expected HIV incidence must be expressed as a non-negative
function, we use B-splines to represent the HIV infection curve, subject to the
non-negativity constraint.

1. Introduction

The backcalculation is a method used to estimate the number of persons
infected with the human immunodeficiency virus (HIV), and to project future
acquired immune deficiency syndrome (AIDS) incidence (Brookmeyer and Gail,
1986, 1988; Center of Disease Control, 1987, 1990; Gail and Brookmeyer, 1988;
Brookmeyer and Damiano, 1988; Taylor, 1989; Day and Gore, 1989; Isham, 1989;
Rosemberg and Gail, 1991).

Brookmeyer and Gail (1986, 1988), Gail and Brookmeyer (1988), and Rosem-
berg and Gail (1991) discuss the backcalculation method, applied to estimating
the numbers of individuals previously infected with the human immunodeficiency
virus by flexible models. They base their backcalculation on step function models,
as well as more general spline functions.

Although Rosemberg and Gail (1991) suggest the possibility of using con-
strained estimates to obtain nonnegative valued infection curves, their method,
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introducing spline functions, admit the possibility of negative values at some
time, and their (quadratic) spline model of the infection in the USA yields small
negative values early in the epidemic. The integrated contributions from negative
values were relatively small, and were judged to have little impact on the
estimate of the total number of subjects infected, or on projections.

Rosemberg and Gail (1991) suggest however that each particular infection
curve yielding negative values, as well as their relative families, should be
reviewed critically, modified, or discarded. Thus, we present a simple approach
to obtain constrained estimates of the infection curves.

We base our infection curve models on B-splines representations. Using B-
splines of order one, step functions are included in our models (with discontinuity
at knot points). Also, broken-lines are included as combinations of B-splines of
order two (so called "hat functions"). Usual spline functions with continuous first
or higher order derivatives are included in the representation proposed by us, if
B-spline coefficients are estimated without constraints. Finally, we propose non-
negativity constrained B-spline combinations as proper models for infection
curves.

Thus, we present a regression approach to the backcalculation method, to
estimate the HIV infection curve using flexible, nonparametric models.

Because expected HIV incidence must be expressed as a nonnegative valued
function, we use B-splines (Boor, 1978) to represent HIV infection curves accord-
ing to a non-negativity constraint.

2. The infection curve model

Linear B-spline combinations include step functions, picewise linear, as well
as usual picewise polynomial functions (Boor, 1987, in particular chapter IX).
Using B-spline representations, simple constrains in the curve values and deri-
vatives are easily introduced. To be specific, infection curves, representing the
number of persons infected per time unit (or "instantaneous" infection rates),
must be non-negative valued.

Given a partition

=T = ... =Tp <Tpy) < oo ST K Tpp] = vve =Ty = O

of an interval [a,b], a "spline" is a polynomial on each interval [tj, tj.1] (we shall
refer to the 7; as "knots", introducing repeated knots at @ and b to facilitate the

introduction of the B-spline representation). In particular, parabolic (3rd order),
and cubic splines (4th order), as well as higher order splines (in general, k-th

order), are smooth functions, respectively C! and C? or smoother (Ck“z) .
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Given a knot sequence, B-splines represent a convenient basis for the space
of splines. In fact, any spline function s(x) can be uniquely expressed as a linear
combination of the B-splines Bjx), j=1,...,n, in the form

s() = Y B;B,a) . @)
J=1

B-spline functions are non-negative and "local", i.e. only k B-splines, from
B; j41(x) to Bj(x) , are nonzero on each particular interval [tj, tj.1] . Thus, the B;
sequence give a fair idea of the graph of s(x). Moreover, if the f; are non-negative,
so is s(x), and if Pj is a monotonic sequence, s(x) is monotonic (Boor, 1987, in
particular chapter IX and X).

3. From HIV infection to AIDS, the model

Being #, the start of the epidemic, we assume that AIDS incidence counts are
available from £, to ¢;, the ultimate date for which reliable data are available.

We assume that the number of AIDS cases is available in discrete form. Thus,
having divided calendar time into ¢ intervals (¢, #],..., (251, tj1 , we denote as
Y; the number of AIDS cases diagnosed in the j-th interval ¢, 4] -

We estimate the infection curve s(x), which specifies the expected number
infected in time interval (s, s+ds) , considering the general family of infection
curves defined by a B-spline basis set B = {B,(x), ..., B,(x)} , where B;(x) = B;, are
B-spline functions of order k.

Thus, the infection function, s(x), is defined according to (1), for real coeffi-
cients B, ..., f,, . Imposing the non-negativity restriction to p; , we constrain s(x)
to a nonnegative valued function.

The total number of infected in an interval (¢,_, ¢,] is

[ s@dx =3 B+ ([ Bix)dx - [ By} . @)

Gk i=1 G i

Let F(¢) be the assumed incubation distribution, that describes the time from
infection to clinical AIDS (equal to zero for £<0). The expected number of cases
in interval (¢;_y, ¢l is given by the convolution

G
E(Y) = [ s@){F(t; - %) -F(t;; - x) }dx

to
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where g;; are obtainable from numerical integration. To obtain g;; values we use
an adaptative integration method (Rice, 1983), allowing for possible singularities
at knot points.

Thus, f; coefficients may be estimated by regression methods. It is possible
to estimate the parameters f; according to a constrained linear problem
(B; = 0). However, we prefer to constrain the parameters f; introducing the
transformations f§; = exp (B;) , solving a nonlinear problem on B! Further, we

assume that the numbers of AIDS cases diagnosed on each time interval,
Y;, j=1,...,J, are independent Poisson variates. Thus we estimate parameters
according to a Poisson, maximum likelihood method (McCullagh and Nelder,
1989).

Finally, interval estimates have been computed according to a bootstrap
method (Hinkley, 1988, in particular pages 330-332). Bootstrap estimates have
been obtained by sampling with replacement the residuals from the expected
values obtained by the nonlinear regression that relate AIDS cases to the number
of HIV infected. Each residual has been considered as a standardised residual,
normalized with respect to the expected variance, proportional to the expected
value, according to the Poisson model adopted for the stochastic component of
our regression model. The confidence limits were obtained according to the
percentile method (DiCiccio and Romano, 1988).

4. Examples

We illustrate the methods using AIDS incidence data for the United States,
adjusted for reporting delays (Rosemberg, 1990), which have been utilised by
Rosemberg and Gail (1991) to present their approach to the backcalculation.

Figure 1 presents estimates for the infection curve obtained according to
unconstrained and constrained models. Left estimates were obtained assuming
that the incubation distribution is Weibull with F(¢) = 1 - exp (-0.0021 ¢ >%'%),
with median incubation period equal to 10 years (Brookmeyer and Goedert, 1989).
Right estimates were obtained using the "Fast"-Weibull incubation function
(lower 95%  confidence limit for Weibull incubation curves),

F(t) = 1 - exp (-0.0021 £ 2%%% already adopted by Rosemberg, Gail, and Carroll
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Fig.1.Infection curves obtained using different 3rd order spline models. Left and right
estimates were obtained using Weibull functions with median incubation time equal
to 10 years (left), 9 years (right, dotted lines) and 11 years (right, solid lines). In (a)
we present the model without constraints, with a single knot at January 1982, and
asymptotic interval estimates; in (b) the model (a) is presented with bootstrap interval
estimates (percentile method); in (c) we present the infection curve obtained
introducing the non-negativity constraint in the previous model (one knot at J anuary
1982). Finally, graph (d) presents estimates of the infection curve obtained according
a non negatively constrained model with initial value and first derivative equal to
zero, and knot points at April 1978, July 1979, and January 1982. Insets show the
adopted B-spline basis.
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(1992), or the modified F(¢) = 1 - exp (-0.0040 £ 2119) introduced by Rosemberg
and Gail (1991) to test their model, with median incubation periods equal to 9
and 11 years, respectively.

In Figure 1-a the infection curve was obtained using a quadratic spline model
without constraints, with a single knot at January 1982, as proposed by Rosem-
bergand Gail (1991). Interval estimates have been obtained as linear combination
of estimates with an approximate (asymptotic) Gaussian distribution (Rosemberg
and Gail, 1991). ]

In Figure 1-b we present the same model as presented above, but with interval
estimates obtained as the interval between 2.5th and 97.5th percentiles from a
sample of 80 model estimations obtained by a bootstrap method.

In Figure 1-c, the spline function was obtained by including the non—negativity
constraint in the previous spline function. Only one (inner) knot is present in
this function, at January 1982. Non-negatively constrained B-splines combina-
tions are generally more "stiff" than simpler unconstrained B-spline combina-
tions, in that higher values due to some B-spline can’t be compensated by negative
values of other B-spline. Thus, instead of early positive values, followed by
negative ones, as in estimates in (a) and (b), this curve assumes few infected
subjects in the initial and mid years of the considered time interval, and a very
high number in late years (Table 1).

The fit of the constrained model (c), relative to the observed AIDS cases, is
not as good as the fit obtained by the unconstrained model (Table 1). However,
in the constrained curve showed in Figure 1-c, the first two coefficients of the
B-spline function are very close to zero. Consequently, the initial value of the
curve and the initial value of the first derivative are close to zero. The number
of free parameters in the curve fitting is, for practical purposes, reduced from
four to two.

Hypothesising to zero the initial value of the curve and the initial value of
the first derivative (fixing "a priori" the first two coefficients in the B-spline
function equal to zero), we may introduce two additional knot points, thus
obtaining a more flexible infection curve with the same number of parameters
to be estimated as for the previous curves (four).

Figure 1-d presents estimates for the infection curve obtained according to a
non-negatively constrained model with initial value and first derivative equal to
zero, and knot points at April 1978, July 1979 and January 1982. This estimate
of infection curve is similar to the infection curve estimated by a simple, uncon-
strained spline. However, in this case the expected HIV infection is expressed
by non-negative numbers all time. Also, the fit of the observed AIDS cases
obtained by this constrained model appears as good as the fit obtained with the
unconstrained model (Table 1).

It is relatively easy to introduce more complex models that accounts for
therapy and changes in the surveillance definition of AIDS. In fact, since these
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Table 1
Estimates of the number of persons infected with HIV before April 1988, according
to various models, incubation curves and B-splines basis

Model characteristics Numbers prevxouslP/ infected  Goodness of
(Figure 1 reference) ) (95% C.1.)V fit?

F(t) = 1-exp(-0.0021t>%16)

one'(inner) knot at January 1982  (a) 1183614 (1091232-1275997)  100.6
+ bootstrap C.I. (b) 1183614 (1043697-1354284)  100.6
+ non-negativity constraint (©) 1682418 (1498514-1898480) 619.9
+ knots April 1978 and July 1979¥ (d) 1139570  (969837-1321477) - 101.3
F(t) = 1-exp(-0.0021¢>5%%) . ,

one (inner) knot at January 1982 (a) 935533  (852976-1018091) Lo
+ bootstrap C.I. (b) 935533 (817908-1081937) 99.0
+ non-negativity constraint - (©) 1420887 (1261313-1629366) 536.4
+ knots April 1978 and July 1979% @ 903518 (751115-1015606) 100.1
F(t) = 1-exp(—0.0040¢%14%

one (inner) knot at January 1982 (a) 1420978 (1358257-1483699) 106.2
+ bootstrap C.I. (b) 1420978 (1318889-1547120) 106.2
+ non-negativity constraint (©) 1943734 (1757128-2156386) 858.8

+ knots April 1978 and July 19799 (d) 1390466 (1269157-1518874)  104.7

Fo) = 1-exp(-0. 0021¢* 516)
"natural incubation"

+ time changes allowing for
therapy and the 1987 revision
of the AIDS definition,
bootstrap C.I., . 913387 (808860-999552) 82.7
(inner) knots at April 1978,
July 1979, January 1982 9
gay : IVDU/heterosexuals, 2 : 1

+ constant CV from October 1985 927410 (812207-1085601) 82.9Y

Y 95% confidence interval
sum of the squared deviations divided by the expected values
initial value and first derivative equal to zero

9 weighted deviations, weights have been scaled to obtain results comparable to
previous models

variables involve changes in the incubation distribution only, our B-spline rep-
resentation of the infection curves is unchanged. Figure 2 presents infection
curves estimates obtained according to a model allowing for therapy and the
revision of the AIDS surveillance definition in 1987, according to the hypothesis
formulated by Rosemberg, Gail, and Carrol (1992). In this example, we simly
hypothesized that gay and IVDU/heterosexuals contribute to AIDS incidence in
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a 2:1 ratio. Also, a gradual onset of the effects of changes in AIDS definition was
supposed, with main changes in "incubation" distribution occuring during 1
January 1985 — 31 December 1987 (Appendix).

Finally, to model the uncertainty introduced by correction for reporting delays,
we may give up simple Poisson regression to model a constant coefficient of
variation (CV) for adjusted AIDS counts according to Rosemberg’s observations
(Rosemberg, 1990). An example is showed in Figure 2.
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Fig.2.Observed (o) and estimated (dotted lines) AIDS cases, and infection curves (solid
lines) according to a model allowing for therapy and revision of AIDS definition.
B-splines (infection curve model) and interval estimates are as in Figure 1-d. Curve
on the top was estimated according to a simple "Poisson" regression. Bottom curve
represents the result of a joint model for expected values and dispersion, according to
a quasi-likelihood approach in wich variance was hypothesized to be proportional to
the expected values before 1 October 1985, and proportional to squared expected
values — constant coefficient of variation (CV) — from 1 October 1985. CV was estimated
by joint modelling expected values and dispersion, maximizing an extended
quasi-likelihood, in which expected values have been modeled according to a (quasi)
Poisson and gamma regression and a gamma distribution was used to model
dispersion parameters (McCullagh and Nelder, 1989). Estimated CV from 1 October
1985 was 2.5%, (before 1 October 1985 we also estimate Poisson overdispersion, with
a dispersion parameter equal to 3). Very similar results have been obtained fixing "a
priori" CV to 8%, according to the values obtained by Rosemberg (1990) from
Northeastern region of United States.
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Estimates of previous numbers infected according to the various models
proposed, and goodness of fit of the models, are resumed in Table 1.

5. Comments

In this paper we present flexible models which may be used to backcalculate
the HIV infection curve subject to non-negativity constraints. Spline functions,
according to a B-spline representation, are used.

Simpler models, as step functions and broken-lines, are included as special
cases, but the inclusion of the non-negativity constraint introduce some calcula-
tion complexities, especially regarding to interval estimation. Thus, in our ap-
proach, the estimation of the infection curve was a nonlinear regression problem,
and interval estimates have been calculated according to a bootstrap method.
However, the biological relevance of the non-negativity constraint, and the im-
portance of the data and results, justify our computational efforts.

Non-negatively constrained B-spline combinations appear less flexible than
simpler, unconstrained B-spline combinations, or "classical" spline functions, in
that higher values due to some B-spline can not be compensated by negative
values of other B-spline. However, this is not a disadvantage, involving less
wiggles in estimated curves, provided that underlying ties are recognised.

B-spline representation of classical spline functions involve multiple knots at
extreme values. In particular, B-spline with multiple knots at time zero may
have, at time zero, a positive value and a negative trend (1st B-spline; three
knots) or a positive derivative (2nd B-spline; two knots). However, it may occur
that positive, initial values (positive 1st B-spline coefficient) may be accepted
only if associated with a very fast negative trend (negative 2nd B-spline coeffi-
cient) and eventual negative values, or a strong, initial (and extended) positive
trend (positive 2nd B-spline coefficient) may appear inappropriate; thus, when
fitting non-negatively constrained B-splines, one may force the first two coeffi-
cients to zero, with a possible important penalization in flexibility. In our case
only four parameters were introduced; in constrained models, they were reduced,
in practice, to two, with a great loss in flexibility. Introducing zero initial value
and zero first derivative by hypothesis, allow us to introduce additional "inner"
knots, thus restoring flexibility to our constrained curves without introducing
too many parameters. '
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Appendix

A model allowing for therapy and the revision of the
AIDS definition

The expected number of cases in interval (¢;_;, ¢ is given by the formula

L
EY) = [ s@){F@;-x|s)F(ti1-x]s)dx |

to

which differs from (3) since incubation depends on s, the time of HIV infection.
The incubation function, u years after infection, is defined as

F(u|s)=f F(u|s,t)dP(z|s) ,

where

0 for t<s; or t<s
P(t|s) = Jp(v-sg) /(sp-50) for sy=t<s; and t=s
p for t>s; and 7=s

is the treatment onset distribution, with s, /s, equal to 1 April 1987/31 March
1990 in gay, 1 April 1988/31 March 1991 in IVDU and heterosexuals, and

F(u|s,T) = 1-exp {—i h(u|s,t)du
0

is the incubation distribution according to the hazard function
h(u|s,t) = ho(u) {0 )l(u+s 27) + I(u+s < 1) }- d(u+s) ,

where hy=0.0021-2.516¢%1® is the "natural" hazard, corresponding to the

Weibull distribution F(¢) = 1-exp(-0.0021 ¢ 2'516) I(-) is an indicator function with

value 1 when the argument is true and 0 otherwise, and v is the calendar tlme
at which people have access to treatment.
O(x) is an efficacy function relative to treatment effects,

O(u) = 1-0.5-exp{2(u-a)} /[1+exp{ 2(u-a)}], o =5.0 years.

d(u+s) includes the effects of AIDS definition changes in 1987: not excluding
AIDS cases diagnosed before 1 October 1987 solely on the basis of newly-recog-
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nised conditions (Rosemberg, Gail and Carroll, 1992), we suppose a gradual
increase in reporting (hazard), according to the function

d(u+s) = 1+0.1-exp{2(u+s-P)} /[1+exp{2(u+s-p)}, p=1 July 1986 . .



